Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282448

RESUMO

ImportancePrior studies using large registries suggested a modest increase in risk for neurodevelopmental diagnoses among children of mothers with immune activation during pregnancy, and such risk may be sex-specific. ObjectiveTo determine whether in utero exposure to the novel coronavirus SARS-CoV-2 is associated with sex-specific risk for neurodevelopmental disorders up to 18 months after birth, compared to unexposed offspring born during or prior to the pandemic period. DesignRetrospective cohort. ParticipantsLive offspring of all mothers who delivered between March 2018 and May 2021 at any of eight hospitals across two health systems in Massachusetts. ExposurePCR evidence of maternal SARS-CoV-2 infection during pregnancy. Main Outcome and MeasuresElectronic health record documentation of ICD-10 diagnostic codes corresponding to neurodevelopmental disorders. ResultsThe pandemic cohort included 18,323 live births, including 877 (4.8%) to individuals with SARS-CoV-2 positivity during pregnancy. The cohort included 1806 (9.9%) Asian individuals, 1634 (8.9%) Black individuals, 1711 (9.3%) individuals of another race, and 12,694 (69%) White individuals; 2614 (14%) were of Hispanic ethnicity. Mean maternal age was 33.0 years (IQR 30.0-36.0). In adjusted regression models accounting for race, ethnicity, insurance status, hospital type (academic center vs. community), maternal age, and preterm status, SARS-CoV-2 positivity was associated with statistically significant elevation in risk for neurodevelopmental diagnoses among male offspring (adjusted OR 1.99, 95% CI 1.19-3.34; p=0.009) but not female offspring (adjusted OR 0.90, 95% CI 0.43-1.88; p=0.8). Similar effects were identified using matched analyses in lieu of regression. Conclusion and RelevanceSARS-CoV-2 exposure in utero was associated with greater magnitude of risk for neurodevelopmental diagnoses among male offspring in the 12 months following birth. As with prior studies of maternal infection, substantially larger cohorts and longer follow-up will be required to reliably estimate or refute risk. Trial RegistrationNA Key PointsO_ST_ABSQuestionC_ST_ABSAre rates of neurodevelopmental disorder diagnoses greater among male or female children with COVID-19 exposure in utero compared to those with no such exposure? FindingsIn a cohort of 18,323 infants delivered after February 2020, males but not females born to mothers with a positive SARS-CoV-2 PCR test during pregnancy were more likely to receive a neurodevelopmental diagnosis in the first 12 months after delivery, even after accounting for preterm delivery. MeaningThese findings suggest that male offspring exposed to COVID-19 in utero may be at increased risk for neurodevelopmental disorders.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-386714

RESUMO

BackgroundSARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Whole-genome sequencing (WGS) of the virus with death in SARS-CoV-2 patients is one potential method of early identification of highly pathogenic strains to target for containment. MethodsWe analyzed 7,548 single stranded RNA-genomes of SARS-CoV-2 patients in the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) and associated variants with reported patients health status from COVID-19, i.e. deceased versus non-deceased. We probed each locus of the single stranded RNA of the SARS-CoV-2 virus for direct association with host/patient mortality using a logistic regression. ResultsIn total, evaluating 29,891 loci of the viral genome for association with patient/host mortality, two loci, at 12,053bp and 25,088bp, achieved genome-wide significance (p-values of 4.09e-09 and 4.41e-23, respectively). ConclusionsMutations at 25,088bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Additionally, mutations at 12,053bp are within the ORF1ab gene, in a region encoding for the protein nsp7, which is necessary to form the RNA polymerase complex responsible for viral replication and transcription. Both mutations altered amino acid coding sequences, potentially imposing structural changes that could enhance viral infectivity and symptom severity, and may be important to consider as targets for therapeutic development. Identification of these highly significant associations, unlikely to occur by chance, may assist with COVID-19 early containment of strains that are potentially highly pathogenic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...